CITY OF ELKHART, INDIANA INDUSTRIAL WASTE QUESTIONNAIRE

SEC.	TION A. GENERAL INFORMATION (Type or Print, Please)
1.	Company NameVincent Bach I
2.	Mailing Address P.O. Box 310
3.	Address of Premises 500 Industrial Parkway, Elkhart, Ind. 46515
4.	Name and Title of Signing Official A.M. Nonkis, MFG. MGR.
5.	Wastewater discharges to:
	City sewer system Yes
	Private septic system No
6.	If your facility discharges to the City sewer system, check the types of discharges:
	X Sanitary Wash water Rinse water
	X Cooling water X Process water Scrubber water
	Other
	Note: If your facility discharges only to a private septic system and not to the City sewer system, or if only sanitary sewage is discharged to the City sewer system, it is only necessary to fill out Section A of this questionnaire. Otherwise, complete entire questionnaire.
7.	Contact Official
	Name Herbert L. Kirts
	Title Chief Engineer
	•
	Address 500 Industrial Parkway
	Address 500 Industrial Parkway Phone Number 295-6730

SECTION B. PRODUCT OR SERVICE INFORMATION

plating and vibratory finishing. Principal Raw Materials Used: Brass, solder, soldering fluxes Catalysts, Intermediates: None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.	Brief description of manufacturing or service activity on premi	3es
Principal Raw Materials Used: Brass, solder, soldering fluxes Catalysts, Intermediates: None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.	Manufacture of musical instruments includes nickel & silver	
Brass, solder, soldering fluxes Catalysts, Intermediates: None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.	plating and vibratory finishing.	
Brass, solder, soldering fluxes Catalysts, Intermediates: None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for account of your processes that are subject to USEPA pretreatment regulations.		
Brass, solder, soldering fluxes Catalysts, Intermediates: None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for account of your processes that are subject to USEPA pretreatment regulations.		
Catalysts, Intermediates: None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.	Principal Raw Materials Used:	
None Principal Product or Service (use Standard Industrial Classification Manual if appropriate): Appended to this questionnaire is a list of Standard Industric Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.	Brass, solder, soldering fluxes	
None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.		
None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.		
None Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.		
Principal Product or Service (use Standard Industrial Classificati Manual if appropriate): 3931 Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.	Catalysts, Intermediates:	
Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.	None	
Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.		
Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.		
Appended to this questionnaire is a list of Standard Industri Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feach of your processes that are subject to USEPA pretreatment regulations.		
Appended to this questionnaire is a list of Standard Industric Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes feeach of your processes that are subject to USEPA pretreatment regulations.	Principal Product or Service (use Standard Industrial Classifica	tio
Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.	Manual if appropriate): 3931	
Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.		·
Classification (SIC) codes for industries currently or potential subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.		
subject to USEPA preteatment regulations. List SIC codes for each of your processes that are subject to USEPA pretreatment regulations.		
regulations.	subject to USEPA preteatment regulations. List SIC codes	fo
•	•	ıen
3471 Electroplating, plating, polishing.	2/71 Floatronlating plating polishing	•

SEC	TION C. PLANT OPERATIONAL CHARACTERISTICS
1.	Type of Discharge: Batch X Continuous Both
	For batch discharges, list types, average number of batches/24 hrs.
	and volume (gallons) per batch.
2.	Is there a scheduled shutdown? Yes
	When?lst 2 weeks of July
3.	Is production seasonal? <u>Continuous</u>
	If yes, explain indicating months(s) of peak production.
4.	Average number of employees per shift: 400 lst; none 2nd; none 3rd
5.	Shift start times: 6:45 AM 1st; None 2nd; None 3rd
6.	Shifts normally worked each day of the week:
	Sun Mon Tue Wed Thu Fri Sat
	lst <u>X X X X X</u>
	2nd
	3rd
7.	Describe any wastewater treatment equipment or processes in use:
	Following selected process bath's, static rinse tanks are used to
	minimize affluent concentrations. Process changes & a water
	polution control facility are in the engineering & planning stages

SECTION D. WATER CONSUMPTION AND LOSS

Source	Quantity
City of Elkhart Water Utili	ty <u>87,200</u> gallons per d
	gallons per d
	gallons per d
	gallons per d
Water treatment processes in	use:
Chemical coagulation polymers, etc.	, including use of alum, ferric chlori
Lime softening	
X Resin (ion exchange)	water softening
Filtration	
Filtration Chemical (chlorine or	r ozone) disinfection
Chemical (chlorine or	r ozone) disinfection
Chemical (chlorine or	
Chemical (chlorine or Others	
Chemical (chlorine or Others	ant: Reused for
Chemical (chlorine or Others	ant:
Chemical (chlorine or Others List Water Consumption in Plan	ant: Reused for process water gallons per day
Chemical (chlorine or Others List Water Consumption in Pla	ant: Reused for process water gallons per day
Chemical (chlorine or Others List Water Consumption in Plate Cooling Water Boiler Feed	ant: Reused for process water gallons per day 200 gallons per day
Chemical (chlorine or Others Others List Water Consumption in Plate Cooling Water Boiler Feed Process Water	ant: Reused for process water gallons per day 200 gallons per day 83,000 gallons per day

	e volume of discharg		~ -	
City Wast	ewater Sewer	85,500	gallons per	day
Septic Ta	ank Discharge		gallons per	day
Surface I	Discharge] 	gallons per	day
Waste Hav	ıler		gallons per	day
Evaporati	ion	1,700	gallons per	day
Contained	i in Product		gallons per	day
Is Discharge	e to Sewer:	Intermittent	X During plant	Steady coperation
List average B-5 above:	ge water usage for	SIC Processes	itemized in	Section
-		•		
Regulated SIC No.	Brief Process De	escription	Average V	
•	Brief Process De			on(GPD)
SIC No.			Consumption	on(GPD)
SIC No.			Consumption	on(GPD)
SIC No.			Consumption	on(GPD)
SIC No.			Consumption	on(GPD)

SECTION E. SEWER CONNECTION AND DISCHARGE INFORMATION

1. List plant sewer outlets and flow: (assign sequential reference number to each sewer starting with No. 1).

Reference No.	Descriptive Location of Sewer Connection or Discharge Point	Avg. Flow (gpd)
1	Manhole openning near sidewalk directly	-
	in front of the main office per print.	

- 2. Attach a scaled drawing or dimensioned sketch of the industrial complex showing location of sewer referenced in E-1 above and location of the SIC process described in Section D-5. Show location of monitoring manhole, if any, and other possible sampling points for sewers and SIC process effluents. Indicate how City industrial monitoring staff can gain access to the sampling points. For reference and field orientation buildings, streets, alleys, and other pertinent physical structures should be included.
- 3. Is plant required to prepare a Spill Prevention Control and Countermeasure (SPCC) Plan per 40 CFR 112 or a RCRA Contingency Plan?

 No If report has been prepared, attach copy. Copy attached.

 Yes If report is required, but has not yet been prepared, indicate date when it will be submitted. Spring of 1984

SECTION F. PRIORITY POLLUTANT INFORMATION

1. Please indicate by placing an "X" in the appropriate box by each listed chemical whether it is Suspected to be Absent, Known to be Absent, Suspected to be Present, or Known to be Present in your manufacturing or service activity or generated as a byproduct. Some compounds are known by other names. Please refer to Appendix A for those compounds which have an asterisk(*).

TTEM NO.	CHEMICAL COMPOUND	SUSPECTED	KNOWN	SUSPECTED	KNOWN	ITEM/ NO.	CHEMICAL COMPOUND	SUSPECTED	KNOWN	SUSPECTED	NWONX TN:15:111d
1.	ammonia			1	X	47.	chlorobenzene				1
3.	asbestos (fibrous)		X	Ī		48.	chloroethane'		i		Ī
3.	cvamide (total)	_		1	X	49.	2-chloroethylvinyl ether	1	1		T
			Х			50.	chloroform*	 	-		1
4.	antimony (total)		X			51.	chloromethane*			Ì	1
ŝ.	arsenic (total)		X			52.	2-chioronaphthalene			ı	1
5.	beryllium (total)		X			53.	2-chlorophenol*		1	i	Ī
	cadmium (total)		X			54.	4-chlorophenylphenyl when		ì	1	?
3.	chromium (total)		1		X	55.	chrysene*			1	Ī.
9.	copper (total)			1	X		4,4'-000"		ì	į	<u> </u>
10.	lead (total).		<u> </u>	i	X	157.	4,4'-00E*		1	1	1
11.	mercury (total)		X	İ		58.	4.4'-DOT*		i	i	
i	nickel (total)		<u>;</u>	:	X	59.	dibenzo(a,h)anthracene*		<u>i </u>	:	
15.	selenium (total)		X	<u>:</u>		160.	dibromochloromethane*	<u> </u>	i	<u>: </u>	!
14.	silver (total)		1	1	X		[1,2-dichloropenzene*		!	!	·
!5.	thallium (total)		X	}	i i	62.	,3-dichlorobeniene*	1	!	!	!
16.	linc (total)		:	1	X		1,4-dichlorebensene"	1	<u>i</u>	<u>i</u>	<u>!</u>
	l		<u>i</u>	<u>.</u>	1	1 64.	3,3'-dichloropenzidine		1	<u>i </u>	<u> </u>
1.	acenapithene		1	<u>; </u>	<u> </u>	65.	dichlorodifluoromethane*	ļ	<u> </u>	!	<u> </u>
13.	lacenaonthylene		<u> </u>	1	} '	66.	l,l-dichloroetname*	<u> </u>	!	!	<u> </u>
19.	acrolein		1	<u> </u>	! !	67.	[1,2-dichloroethane*	<u> </u>	<u> </u>	1	<u> </u>
:າ.	acrylonitrile		ļ	1	1	68.	1.1-dichloroetneme*			!	
21.	aldrin	<u> </u>	 			69.	trans-1,2-dichloroethene	'	<u> </u>	-	-
33.	anthracene		 	!	ļ <u>!</u>		2.4-dichlorochenol	!	<u>!</u>	;	 .
23.	bensene		-	 	<u> </u>	71.	11,2-dichloropropane*		<u> </u>	!	;
24.	benzidine		!	—		72.	(cis & trans)1,3-dichlo-	1	ļ	İ	1
25.	benzo(a)anthracene*		-	 -		/ 	ropropene*	 	!	<u> </u>	
26.	benzo(a)pyrene*		 			73.	dieldrin	-	!	<u>' </u>	!
	benzo(b) fluoranthene		,	:	! 	-1. -5.	dietnyl onthalate*	+	'		!
33.	benzoig,h,i)perylene*		-		}	76.	2,4-dimethylphenol*	+	:		
29.	benzo(k) fluoranthene*	ļ	;		+			-	-	'	
30.	a-BHC (alma) b-BHC (beta)		: -	; 	+	3.	di-n-butyl onthalate	<u>.</u>		1	·
31.	id-BHC (delta)	<u> </u>	:	: -		79.	di-n-octvl pnthalate* 4,6din:tro-2-methylphenol	· <u>·</u>		 	
33.	ig-BHC*(gamma)	! !	+	-		80.	2,4-dinitrophenol	 	}	-	
33.	bis(2-chloroethyDether	<u> </u>	<u>.</u>		- 	31.	2.4-dinitrotoluene		<u></u>	<u>.</u>	-
					†		2.5-dinitrotoluene	 -		!	 -
	bis2-chlorostnoxymethare			-	 -		1.2-dipmenvlhvdrazine"				-
10.	bis (chloromethyl)ether	_	<u> </u>	·		34.	endosultan (*		<u> </u>	<u>: </u>	+
134	bis2-ethylhexylionthalate	1	$\dot{\top}$		+	1 35.	endosulfan II*	<u> </u>	.		:
39.	bromodichloromethane	<u> </u>	1	1		36.	endosulfan sulfate			;	i
10.	bromotorm*	†		1		0.7	endrin	•	i	1	+-
31.		 	1	1 –	1	138.	endrin aldenvde	.	: 	<u> </u>	:
12.	1-bromophenviphenvi euz		1	1	 	189.	ethviheniene	ĺ		<u> </u>	<u> </u>
13.	butvibentvi phthalate	i	1	1		190.	fluoranthene		1	†	1
14.		i	+	1			fluorene*		Ť-	}	
15.		<u> </u>	T	1	1		heotachlor		i	T	
46.		Ī	+		-	93.	heptachlor epoxide		1	; 	

ITEM NO.	CHEMICAL COMPOUND	SUSPECTED	KNOWN	SUSPECTED	KNOWN PRI: SFNT	ITEM NO.	CHEMICAL COMPOUND	SUSPECTUR	KNOWN	SUSPECTED	KNOWN PRESENT
94.	hexachlorobenzene*			1		112.	PC3-1248*				1
95.	hexachlorobutadiene			T	T	1113.	PCB-1254*				
96.	hexachlorocyclopenta-		I			114.	PC3-1260°	I	Ī		
	diene"					115.	pentachlorophenol				1
97.	hexachloroethane*					116.	phenanthrene				1
98.	indeno(1,2,3-cd)pyrene*	1		Ţ		117.	phenol				
99.	isophorone*				T	118.	pyrene	\Box	T		Ī _
100.	imethylene chloride"					119.	2,3,7,8-tetrachlorodi-		Ĭ		
101.	naphthalene	į					benzo-p-dioxin*				
102.	nitrobeniene					120.	1122-tetrachloroethane*		1		
105.	2-nitroonenol*				1	121.	tetrachloroethene*		1		•
104.	i 4-nitrounenol*	l			T	122.	toluene*	1		1	
105.	n-nitrosodimethylamine*				1	123.	toxaphene				I
106.	n-nitrosodioropylamine*			1		124.	1,2,4-trichlorobenzene			!	T
107.	in-nitrosodiphenylamine*		1			125.	L.L.trichloroethane			Ī	
108.	; PCB-1016*		İ		1	1126.	L.1.2-trichloroethane*		1		
109.	PCB-1221*				i	127.	trichloroethene*		i		
	1 PC3-1232*	i		i	i	128.	trichlorofluoromethane				
111.	1 PC3-1242*		ĺ		i	1129.	2,4,6-Erichlorophenol		L		
-	,			j	ı	130.	vinyl chloride*	1	i	I	1

2. For chemical compounds in F-2 above which are indicated to be "Known Present," please list and provide the following data for each: (attach additional sheets if needed).

1 Ammonia N/A 8 1bs	ESTINATED LOSS TO SEWER L.BS. /YR.
3 Cyanide 39	
8 Chromium 153 " 9 Copper 1334 " 10 Lead 95 " 12 Nickel 806 " 14 Silver 3 " 16 Zint 1300 "	
9 Copper 1334 "	
10 Lead 95 " 12 Nickel 806 " 14 Silver 3 " 16 Zint 1300 "	
14 Silver 3" 1300 "	
16 Zine 1300 "	
	1
	
	

*Note: N/A Annual losser based upon 1 day measured individual flow rates on composted samples with data combinet8- to show annual rates.

	•	
	3.	List any other chemicals known or anticipated to be present in the discharge.
•		None
3 9	4.	Describe, what if any, laboratory analyses have been conducted on process waste streams in the plant, including which streams were sampled, what parameters were measured, and frequency and type of samples. (The baseline report referred to in G2 below can be referenced in answering this question.)
		An industrial waste survey was conducted section 4 survey result
		is enclosed (page & thru 15)
	SEC	TION G. PRETREATMENT
		TION G. PRETREATMENT Is this plant subject to an existing Pretreatment Standard?
	1.	Is this plant subject to an existing Pretreatment Standard? Yes Is this plant required to submit a baseline report per 40 CFR 403.12? Yes If a baseline report has been prepared, attach a copy to this questionnaire. Copy attached. No If a baseline
	1.	Is this plant subject to an existing Pretreatment Standard? Yes Is this plant required to submit a baseline report per 40 CFR 403.12? Yes If a baseline report has been prepared, attach
	2.	Is this plant subject to an existing Pretreatment Standard? Yes Is this plant required to submit a baseline report per 40 CFR 403.12? Yes If a baseline report has been prepared, attach a copy to this questionnaire. Copy attached. No If a baseline report is required, but has not yet been prepared, indicate date

and/or operation and mainten by which they will be provided. to in answering this question.	ance (The		equi	red,	list	the	sche
It is intended that pre treat	tment	facil	ities	will	be :	inst	alled
in Spring of 1984.							
				·,			
					Arramento de la computación de		
							
					(12-1-1-11-11-11-11-11-11-11-11-11-11-11-		-
Describe residuals (sludges, por result at your facility and of the residuals. List names of the spent lacquer stripping solutions.	d th of was	e met ste ha	hods ulers	empl , if	oyed appl	to icat	disp le.
or result at your facility an of the residuals. List names of	nd thof was	e met ste ha	hods uler: ro_pl	empl , if ating	oyed appl	to icat	dispole.
or result at your facility an of the residuals. List names of the Spent lacquer stripping solutions.	nd thof was	e met ste ha , elct degrea	hods ulers ro pl	empl , if ating	oyed appl prod	to icat	dispole.
or result at your facility an of the residuals. List names of the residuals. List names of the residuals. List names of the residuals. List names of the residuals. List names of the residuals. List names of the residuals. List names of the residuals. Spent lacquer stripping solutions and the solution of the residuals. Corp. Gold Shield Solvents 2263 Distributors Dr. Indianapolis, Ind. 46241 A-1 Disposal Corp.	nd thof was	e met ste ha , elct degrea	hods ulers ro pl sing	empl s, if ating still	oyed appl prod	to icat	dispole. bath
or result at your facility and of the residuals. List names of Spent lacquer stripping solute sludges, trichlor sludge. (value of Shield Solvents 2263 Distributors Dr. Indianapolis, Ind. 46241	nd thof was	e met ste ha elct degrea	hods ulers ro pl sing	empl s, if ating still	oyed appl prod	to icat	dispole.